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RESONANT SOLUTIONS AND TURNING POINTS IN AN ELLIPTIC PROBLEM
WITH OSCILLATORY BOUNDARY CONDITIONS

ALFONSO CASTRO, ROSA PARDO

ABSTRACT. We consider the elliptic equation −Δu + u = 0 with nonlinear boundary conditions
∂u
∂n = λu+ g(λ, x, u), where the nonlinear term g(λ,x,s)

s → 0, as |s| → 0 and g is oscillatory. We
provide sufficient conditions on g for the existence of sequences of resonant solutions and turning
points, accumulating to zero.

1. INTRODUCTION

The aim of the present work is to complement the study initiated in [Arrieta et al., 2010], and
[Castro and Pardo] on the positive solutions to the following boundary-value problem:

(1.1)

{ −Δu + u = 0, in Ω
∂u
∂n

= λu + g(λ, x, u), on ∂Ω,

where Ω ⊂ R
N is a bounded and sufficiently smooth domain, N ≥ 2, λ is a real parameter,

g(λ, x, s) = o(s) as s → 0 and g is oscillatory. A typical example of such a g is

(1.2) g(x, s) := sα

[
sin

(∣∣∣∣ s

Φ1(x)

∣∣∣∣β
)

+ C

]
with α + β > 1, β < 0.

While in [Arrieta et al., 2010], [Castro and Pardo], the case α + β < 1, β > 0 is treated, we
focus now on the complementary range α + β > 1, β < 0. The case with α < 1 corresponds to
a bifurcation from infinity phenomenon, see [Arrieta et al., 2007, 2009, 2010, Castro and Pardo],
and [Rabinowitz, 1973]. On the contrary, the case with α > 1 corresponds to a bifurcation from
zero phenomenon, see [Arrieta et al., 2007] and [Crandall and Rabinowitz, 1971, Rabinowitz,
1971].

The oscillatory situation is in principle more complex than the monotone one, since order
techniques such as sub and supersolutions are not applicable.
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One novelty in problem (1.1) is that the parameter appears explicitly in the boundary condition.
With respect to this parameter, we perform an analysis of the local bifurcation diagram of non-
negative solutions to (1.1), which turns out to be different from the case α < 1 (see Figures 1, 2
for α > 1 and Figure 3 for α < 1).

Throughout this paper we assume:

(H1): g : R × ∂Ω × R → R is a Carathèodory function (i.e. g = g(λ, x, s) is measurable
in x ∈ Ω, and continuous with respect to (λ, s) ∈ R × R). Moreover, there exist G1 ∈
Lr(∂Ω) with r > N − 1, and continuous functions Λ : R → R

+, and U : R → R
+,

satisfying⎧⎪⎪⎨⎪⎪⎩
‖g(λ, x, s)| ≤ Λ(λ)G1(x)U(s), ∀(λ, x, s) ∈ R × ∂Ω × R,

lim sup
|s|→0

U(s)

|s|α < +∞ for some α > 1.

(H2) : The partial derivative gs(λ, ·, ·) ∈ C(∂Ω × R) (where gs := ∂g
∂s

,) gs(·, ·, 0) = 0, and
there exist F1 ∈ Lr(∂Ω), with r > N − 1, and ρ > 1 such that

|g(λ, x, s) − sgs(λ, x, s)|
|s|ρ ≤ F1(x), as λ → σ1

for x ∈ ∂Ω and s ≤ ε small enough.

Let {σi}∞i=1 denote the sequence of Steklov eigenvalues of the problem

(1.3)

{ −ΔΦ + Φ = 0, in Ω
∂Φ
∂n

= σΦ, on ∂Ω.

The Steklov eigenvalues form an increasing sequence of real numbers, {σi}∞i=1. Each eigenvalue
has finite multiplicity. The first eigenvalue σ1 is simple and, due to Hopf’s Lemma, we may
assume its eigenfunction Φ1 to be strictly positive in Ω. The eigenfunctions are orthogonal in
L2(∂Ω), and we take ‖Φ1‖L∞(∂Ω) = 1.

As stated in [Arrieta et al., 2007, Theorem 8.1], due to (H1) there exists a connected set of
positive solutions of (1.1) known as a branch bifurcating from zero . We denote it by C+ ⊂
R × C(Ω̄), and recall that for (λ, uλ) ∈ C+

u = sΦ1 + w, with w = o (|s|) and |σ1 − λ| = o(1) as |s| → 0.

Definition 1.1. A solution (λ∗, u∗) of (1.1) in the branch of solutions C+ ⊂ R×C(Ω̄) is called a
turning point if there is a neighborhood W of (λ∗, u∗) in R×C(Ω̄) such that, either W ∩C+ ⊂
[λ∗,∞) × C(Ω̄) or W ∩ C+ ⊂ (−∞, λ∗] × C(Ω̄).

Our goal is to give conditions on the nonlinear oscillatory term g that guarantee the existence of
sequences accumulating to zero of subcritical solutions (i.e. for values of the parameter λ < σ1),
supercritical solutions (i.e. for λ > σ1), resonant solutions (i.e. for λ = σ1), and turning points.
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Our main result, Theorem 1.3 below, is exemplified by the case in which g is given by (1.2).
In fact we have:

Theorem 1.2. Assume that g is given by (1.2) with β < 0. If

|C| < 1, and α + β > 1,

then in any neighborhood of the bifurcation point (σ1, 0) in R × C(Ω̄), the branch C+ of posi-
tive solutions of (1.1) contains a sequence of subcritical solutions, a sequence of supercritical
solutions, a sequence of turning points, and a sequence of resonant solutions.

The proof of this Theorem follows directly from Theorem 1.3.

Theorem 1.3. Assume the nonlinearity g satisfies hypothesis (H1) and (H2). Assume also that

(1.4)

∣∣∣∣g(λ, x, s) − g(σ1, x, s)

|s|α
∣∣∣∣→ 0 as λ → σ1, s → 0

pointwise in x.
Let G : R × C(Ω̄) → R be defined by

(1.5) G(λ, u) :=

∫
∂Ω

ug(λ, ·, u)

|u|1+α
Φ1+α

1 .

If there exist sequences {sn}, {s′n} converging to 0+, such that

(1.6) lim
n→+∞

G(σ1, s
′
nΦ1) < 0 < lim

n→+∞
G(σ1, snΦ1)

then

i) For sufficiently large n � 1, if (λ, u) is a solution of (1.1) with

P (u) :=

∫
∂Ω

uΦ1∫
∂Ω

Φ2
1

= sn,

then (λ, u) is subcritical. Similarly, if P (u) = s′
n it is supercritical. Consequently, there

exist two sequences of solutions of (1.1), {(λn, un)} and {(λ′
n, u′

n)} converging to (σ1, 0)
as n → ∞, one of them subcritical, λn < σ1, and the other supercritical, λ′

n > σ1.
ii) There is a sequence converging to zero of turning points {(λ∗

n, u∗
n)} such that

λ∗
n → σ1, ‖u∗

n‖L∞(∂Ω) → 0, as n → ∞.

In fact, we can always choose two subsequences of turning points, one of them sub-
critical, λ∗

2n+1 < σ1, and the other supercritical, λ∗
2n > σ1.

iii) There is a sequence converging to zero of resonant solutions, i.e. there are infinitely many
solutions {(σ1, ũn)} of (1.1) with ‖ũn‖L∞(∂Ω) → 0.

The behavior of positive solutions to (1.1) bifurcating from (σ1, 0) described in Theorems 1.2
and 1.3 is similar to that of the solutions bifurcating from (σ1,∞) for the sublinear problem, see
[Arrieta et al., 2010] for details.
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FIGURE 1. Bifurcation diagram of subcritical and supercritical solutions, con-
taining infinitely many turning points and infinitely many resonant solutions.

The complex nature of the nonlinearity in (1.2), makes an exhaustive analysis of the global
bifurcation diagram outside the scope of this work.

In [Korman, 2008] the author considers in the case α = 1, β = 1. He assumes either N = 1
or Ω to be a ball and the nonlinearity to be bounded by a constant small enough. He obtains what
he calls an oscillatory bifurcation. We refer the reader to [Garcı́a-Melián et al., 2009] for related
problems with nonlinear boundary conditions.

This paper is organized as follows. Section 2 contains the proof of our main result, giving suf-
ficient conditions for having subcritical, supercritical, and resonant solutions. Section 3 presents
two examples; explicit resonant solutions for the oscillatory nonlinearity (1.2) and the one di-
mensional case.

2. SUBCRITICAL, SUPERCRITICAL AND RESONANT SOLUTIONS

In this section we give sufficient conditions for the existence of a branch of solutions to (1.1)
bifurcating from zero which is neither subcritical (λ < σ1), nor supercritical, (λ < σ1). From
this, we conclude the existence of infinitely many turning points, see Definition 1.1, and an
infinite number of solutions for the resonant problem, i.e. for λ = σ1. This is achieved in
Theorem 1.3
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FIGURE 2. A bifurcation diagram for α = 1.5..

At this step, we analyze when the parameter may cross the first Steklov eigenvalue. To do that,
we look at the asymptotic rate of the nonlinear term

(2.1) G0+ :=

∫
∂Ω

lim inf
(λ,s)→(σ1,0)

sg(λ, ·, s)
|s|1+α

Φ1+α
1

for α > 1. Changing lim inf by lim sup we define the number G0+ . If G0+ > 0, then C+

is subcritical, and if G0+ < 0, then C+ is supercritical in a neighborhood of (σ1, 0). See
[Arrieta et al., 2009, Theorems 3.4and 3.5] for the bifurcation from infinity case. In this paper
we consider nonlinearities for which

G0+ < 0 < G0+ .

We shall argue as in [Arrieta et al., 2010] for the bifurcation from infinity case. To determine
whether a sequence of solutions (λn, un) is subcritical or supercritical, one must check the sign
of

(2.2) lim inf
n→∞

G(λn, un) and lim sup
n→∞

G(λn, un),

where G is defined by (1.5). This is done in Lemma 2.3.

In Proposition 2.2, it is proved that when g is such that

|g(λ, x, s)| = O (|s|α) as |s| → 0 for some α > 1,
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FIGURE 3. A bifurcation diagram for α = 0.5

then the solutions in C± can be described as

un = snΦ1 + wn, where
∫

∂Ω

wnΦ1 = 0 and wn = O(|sn|α) as n → 0.

We unveil the signs of the expressions in (2.2) by just looking at the signs of the expressions in
(2.2) at λn = σ1 and un = snΦ1. This is achieved in Lemma 2.4.

For this we first consider a family of linear Steklov problems with a variable nonhomogeneous
term at the boundary h depending on the parameter λ

(2.3)

{ −Δu + u = 0, in Ω
∂u
∂n

= λu + h(λ, x), on ∂Ω

where h(λ, ·) ∈ Lr(∂Ω), r > N − 1 and λ ∈ (−∞, σ2).
We use the decomposition

Lr(∂Ω) = span[Φ1] ⊕ span[Φ1]
⊥, where span[Φ1]

⊥ :=

{
u ∈ Lr(∂Ω) :

∫
∂Ω

u Φ1 = 0

}
.

For h(λ, ·) ∈ Lr(∂Ω), with r > N − 1, we write

(2.4) h(λ, ·) = a1(λ)Φ1 + h1(λ, ·), with a1(λ) =

∫
∂Ω

h(λ, ·) Φ1∫
∂Ω

Φ1
2

,

∫
∂Ω

h1(λ, ·)Φ1 = 0.
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For λ 
= σ1 the solution u = u(λ) of (2.3) has a unique decomposition

(2.5) u =
a1(λ)

σ1 − λ
Φ1 + w, where

∫
∂Ω

wΦ1 = 0,

and w = w(λ) ∈ span[Φ1]
⊥ solves the problem

(2.6)

{ −Δw + w = 0, in Ω
∂w
∂n

= λw + h1(λ, x), on ∂Ω.

Note that in (2.6) w(λ) ∈ span[Φ1]
⊥ is also well defined for λ = σ1. Moreover, we have:

Lemma 2.1. For each compact set K ⊂ (−∞, σ2) ⊂ R there exists a constant C = C(K),
independent of λ, such that

‖w(λ)‖L∞(∂Ω) ≤ C‖h1(λ, ·)‖Lr(∂Ω) for any λ ∈ K,

where w ∈ span[Φ1]
⊥ is the solution of (2.6) and h1 ∈ span[Φ1]

⊥ is defined in (2.4).

Proof. See Lemma 3.1 of [Arrieta et al., 2010]. �

Now we turn our attention to the nonlinear problem (1.1). Recall that for solutions (λ, u) close
to the bifurcation point (σ1, 0) we have

(2.7) u = sΦ1 + w, where w = o(s), w ∈ span[Φ1]
⊥ as s → 0.

We define

(2.8) P (u) :=

∫
∂Ω

u(·) Φ1∫
∂Ω

Φ2
1

.

Next, we give sufficient conditions on the nonlinear term g in (1.1), for w = O(|s|α) as s → 0,
see (2.7). We restrict ourselves below to the branch of positive solutions; a completely analo-
gous result holds for the branch of negative solutions. The following Proposition is essentially
Proposition 3.2 in [Arrieta et al., 2010] rewritten for s → 0; we include the proof by the sake of
completeness.

Proposition 2.2. Assume g satisfies hypotheses (H1), (H2) and that for some α > 1 and ε > 0
there exists a function G1 such that for |λ − σ1| < ε, and s ∈ (0, ε) and x ∈ ∂Ω we have

(2.9)
|g(λ, x, s)|

|s|α ≤ G1(x), G1 ∈ Lr(∂Ω), r > N − 1.

Then, there exists an open set O ⊂ R × C(Ω̄) of the form O = {(λ, u) : |λ − σ1| <
δ0, ‖u‖L∞(Ω) < s0} for some δ0 and s0, such that

(i) There exists a constant C1 independent of λ such that, if (λ, u) ∈ C+ ∩O and (λ, u) 
=
(σ1, 0) then u = sΦ1 + w, where s > 0, w ∈ span[Φ1]

⊥ and

‖w‖L∞(∂Ω) ≤ C1‖G1‖Lr(∂Ω) |s|α, as |s| → 0

(ii) There exists a constant S0 > 0 such that for all |s| ≤ S0 there exists (λ, u) ∈ C+ ∩ O
satisfying u = sΦ1 + w, with w ∈ span[Φ1]

⊥.
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(iii) Moreover, for any (λ, u) ∈ C+ ∩O, u = sΦ1 + w, with w ∈ span[Φ1]
⊥,

|σ1 − λ| ≤ C2|s|α−1, as |s| → 0,

with C2 independent of λ, in fact

C2 =
2‖G1‖L1(∂Ω)∫

∂Ω
Φ2

1

.

Proof. Note that (2.9), Lemma 2.1, and the fact that, from (2.7), Φ1 + w/s → Φ1 as s → 0 in
L∞(∂Ω) imply that ‖w‖L∞(∂Ω) ≤ C|s|α as s → 0. This proves part i).

To prove part ii) note that C+ ∩ O is connected. Hence, using the decomposition in (2.7), we
have u = sΦ1 + w with w ∈ span[Φ1]

⊥. Since the projection P is continuous, see (2.8), the
set {s ∈ R : (1.1) has a solution of the form u = sΦ1 + w and w ∈ [span[Φ1]

⊥]} contains an
interval in R containing zero.

To prove part iii) we observe that if (λ, u) is a solution of (1.1), u = sΦ1 + w, with w ∈
span[Φ1]

⊥, multiplying the equation by the first Steklov eigenfunction Φ1 > 0 and integrating by
parts we obtain,

(σ1 − λ)s

∫
∂Ω

Φ2
1 =

∫
∂Ω

g(λ, x, sΦ1 + w)Φ1.

Taking into account that

|g(λ, x, sΦ1 + w)|
|s| =

|g(λ, x, sΦ1 + w)|
|sΦ1 + w|

∣∣∣Φ1 +
w

s

∣∣∣→ 0, as s → 0

we get λ → σ1 as s → 0.
Moreover, from (2.9), we obtain that

|g(λ, x, sΦ1 + w)| = |s|α |g(λ, x, sΦ1 + w)|
|sΦ1 + w|α

∣∣∣Φ1 +
w

s

∣∣∣α ≤ |s|α G1(x)
∣∣∣Φ1 +

w

s

∣∣∣α ,

and therefore

|σ1 − λ| ≤ |s|α−1∫
∂Ω

Φ2
1

∫
∂Ω

G1(x)
∣∣∣Φ1 +

w

s

∣∣∣α Φ1 ≤ C‖G1‖Lr(∂Ω)|s|α−1

which ends the proof.

Our next Lemma is essentially Lemma 3.1 in [Arrieta et al., 2009] rewritten for s → 0. We
omit its proof. . It allows us to estimate σ1 − λn as λn converges σ1.

Lemma 2.3. Assume the nonlinearity g satisfies hypotheses (H1) and (H2).
Let (λn, un) be a sequence of solutions of (1.1) with λn → σ1 and ‖un‖L∞(∂Ω) → 0. If un > 0,

then
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G0+∫
∂Ω

Φ1
2

≤ 1∫
∂Ω

Φ1
2

lim inf
n→∞

G(λn, un)

≤ lim inf
n→∞

σ1 − λn

‖un‖α−1
L∞(∂Ω)

≤ lim sup
n→∞

σ1 − λn

‖un‖α−1
L∞(∂Ω)

≤ 1∫
∂Ω

Φ1
2

lim sup
n→∞

G(λn, un) ≤ G0+∫
∂Ω

Φ1
2

A similar statement is obtained for the case un < 0, just changing G0+ by G0− and G0+ by
G0− .

Let {sn} and {s′n} satisfy

(2.10) −∞ < lim
n→+∞

G(σ1, s
′
nΦ1) < 0 < lim

n→+∞
G(σ1, snΦ1) < ∞.

In order to prove Theorem 1.3, we show that the signs in (2.2) can be deduced from those of
(2.10). This is stated in the following result, which is a slight variation of [Arrieta et al., 2010,
Lemma 3.3]

Lemma 2.4. Assume that g satisfies hypotheses (H1), (H2) and (1.4).

If (λn, sn) → (σ1, 0) and there exists a constant C such that ‖wn‖L∞(∂Ω) ≤ C|sn|α for all
n → 0, then

lim inf
n→+∞

G(λn, snΦ1 + wn) ≥ lim inf
n→+∞

G(σ1, snΦ1),

where G is given by (1.5). Similarly

lim sup
n→+∞

G(λn, snΦ1 + wn) ≤ lim sup
n→+∞

G(σ1, snΦ1).

Proof. Throughout this proof, C denotes several constants depending only on (Ω, g). Given
ε > 0, assume that |(λn, sn) − (σ1, 0)| < ε.

By the mean value theorem we have

g(λn, x, snΦ1 + wn) − g(λn, x, snΦ1) = wn

∫ 1

0

gs(λn, ·, snΦ1 + τwn) dτ

≤ ‖wn‖L∞(∂Ω) sup
τ∈[0,1]

‖gs(λn, ·, snΦ1 + τwn)‖L∞(∂Ω) .(2.11)
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Therefore∫
∂Ω

∣∣∣g(λn, x, snΦ1 + wn) − g(λn, x, snΦ1)
∣∣∣ Φ1 dx

≤ ‖wn‖L∞(∂Ω)

∫
∂Ω

sup
τ∈[0,1]

‖gs(λn, ·, snΦ1 + τwn)‖L∞(∂Ω)

≤ |∂Ω|‖wn‖L∞(∂Ω) sup
τ∈[0,1]

‖gs(λn, ·, snΦ1 + τwn)‖L∞(∂Ω) .(2.12)

By hypotheses (H1)-(H2), for all x ∈ ∂Ω,

(2.13)
|gs(λn, x, s)|

|s|γ−1
≤ |s|ρ−γF1(x) + C|s|α−γG1(x) max{Λ(λn), n ≥ 1} =: D1(x),

for n large, and γ = min{ρ, α} > 1. Hence, D1 ∈ Lr(∂Ω) with r > N − 1, and

(2.14) sup
|s|≤1/n

|gs(λn, x, s)| ≤ D1(x)

(
1

n

)γ−1

with γ > 1.

Since ‖wn‖L∞(∂Ω) = O(|sn|α), from (2.12) and (2.14)∫
∂Ω

|g(λn, ·, snΦ1 + wn) − g(λn, ·, snΦ1)|
|sn|α Φ1 ≤ C sup

τ∈[0,1]

‖gs(λn, ·, snΦ1 + τwn)‖L∞(∂Ω)

≤ C sup
|s|≤1/n

‖gs(λn, ·, s)‖L∞(∂Ω) −→ 0(2.15)

as n → ∞.

Therefore

lim inf
n→+∞

∫
∂Ω

sng(λn, ·, snΦ1 + wn)

|sn|1+α
Φ1 ≥

≥ lim
n→∞

∫
∂Ω

sng(λn, ·, snΦ1 + wn) − sng(λn, ·, snΦ1)

|sn|1+α
Φ1

+ lim inf
n→+∞

∫
∂Ω

sng(λn, ·, snΦ1)

|sn|1+α
Φ1

= lim inf
n→+∞

∫
∂Ω

sng(λn, ·, snΦ1)

|sn|1+α
Φ1

= lim inf
n→+∞

∫
∂Ω

sng(σ1, ·, snΦ1)

|sn|1+α
Φ1,

where we used (2.15) and (1.4) respectively.

Now note that, multiplying and dividing by
∣∣∣Φ1 + wn

sn

∣∣∣α the integrand of the left hand side

above can be written as
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sng(λn, ·, snΦ1 + wn)

|sn|1+α
Φ1 =

(snΦ1+wn)g(λn, ·, snΦ1 + wn)

|snΦ1+wn|1+α

∣∣∣∣Φ1 +
wn

sn

∣∣∣∣αΦ1.

Then, (H2) and the fact that Φ1 + wn/sn → Φ1 in L∞(∂Ω) concludes the proof.

Now we prove the first main result in this paper. Roughly speaking, it states that if there are
a sequence of subcritical solutions and another of supercritical solutions, since the solution set
is connected, there are infinitely many turning points and infinitely many resonant solutions. We
prove the result for the positive branch. The same conclusions can be attained for the connected
branch of negative solutions bifurcating from zero.

Proof of Theorem 1.3 From Proposition 2.2, ii), consider any two sequences of solutions of
(1.1), such that (λn, un) → (σ1, 0) and (λ′

n, u′
n) → (σ1, 0) in C+ with

P (un) =

∫
∂Ω

unΦ1∫
∂Ω

Φ2
1

= sn, and P (u′
n) =

∫
∂Ω

u′
nΦ1∫

∂Ω
Φ2

1

= s′n.

Writing un = snΦ1 +wn, with wn ∈ span[Φ1]
⊥, from Proposition 2.2 i), we have ‖wn‖L∞(∂Ω) =

O(|sn|α). From Lemmata 2.3, and 2.4, hypotheses (1.4) and (1.6) we get that

lim inf
n→∞

σ1 − λn

‖un‖α−1
L∞(∂Ω)

≥ 1∫
∂Ω

Φ2
1

lim inf
n→∞

∫
∂Ω

(snΦ1 + wn)g(λn, ·, snΦ1 + wn)

|snΦ1 + wn|1+α
Φ1+α

1

≥ 1∫
∂Ω

Φ2
1

lim inf
n→+∞

∫
∂Ω

sng(λn, ·, snΦ1)

|sn|1+α
Φ1

=
1∫

∂Ω
Φ2

1

lim inf
n→+∞

∫
∂Ω

sng(σ1, ·, snΦ1)

|sn|1+α
Φ1 > 0,

and therefore λn < σ1.
Analogously, for (λ′

n, u′
n) we get λ′

n > σ1. Hence i) is proved.

To prove ii), assume, by choosing subsequences if necessary, that sn > s′n > sn+1 for all n ≥ 0
and that 0 < sn, s′n ≤ S0 where S0 is the one from Proposition 2.2, part ii). In particular, from
i) and ii) of Proposition 2.2 we have that if (λ, u) ∈ C+ and P (u) = s < S0 then ‖u‖L∞(∂Ω) ≤
(1 + C1‖G1‖Lr(∂Ω)|S0|α−1)s. Taking S0 small enough we may assume that ‖u‖L∞(∂Ω) ≤ 2s.

Let

(2.16) Kn = {(λ, u) ∈ C+, withP (u) = s, and sn ≥ s ≥ sn+1}
Let us see that, for each n ∈ N, Kn is a compact subset of R × C(Ω̄). Let {(μk, vk)} be a

sequence in Kn. Without loss of generality we may assume that {μk} converges to μ∗. Since
vk = tkΦ1 + wk with wk = O(|tk|α) and sn ≥ tk =: P (vk) ≥ sn+1, for all k, then ‖vk‖C(∂Ω) ≤
tk + ‖wk‖C(∂Ω) ≤ C with C independent of k. This and Proposition 2.3 of [Arrieta et al., 2007]
we have

(2.17) ‖vk‖C(Ω̄) ≤ C!(1 + ‖vk‖C(∂Ω)) ≤ C,
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where, again, C is independent of k. Since the embedding Cγ(Ω̄) → Cγ′
(Ω̄) is compact for

0 < γ′ < γ we may further assume that the sequence {vk} converges to some u∗ ∈ Cγ′
(Ω̄). This,

hypothesis (H1) and the dominated convergence theorem imply that {g(μk, ·, vk)} converges to
g(μ∗, ·, u∗) in Lr(∂Ω). Therefore, since

(2.18)
−Δvk + vk = 0 in Ω

∂vk

∂n
= μkvk + g(μk, x, vk) on ∂Ω,

passing to the limit in the weak sense we have

(2.19)
−Δu∗ + u∗ = 0 in Ω

∂u∗

∂n
= μ∗u∗ + g(λ∗, x, u∗) on ∂Ω.

By the continuity of the projection operator we also have sn ≥ s∗ = P (u∗) = limk→∞ P (vk) ≥
sn+1. Hence (μ∗, u∗) ∈ Kn, which proves that Kn is compact.

Since sn > s′n > sn+1, there exists (λ, u) ∈ Kn with λ > σ1. Hence, if we define

(2.20) λ∗
n = sup{λ : (λ, u) ∈ Kn},

then λ∗
n ≥ λ′

n > σ1, see part i). From the compactness of Kn there exists u∗
n such that (λ∗

n, u∗
n) ∈

Kn. From the definition of λ∗
n, if (λ, u) is a solution of (1.1) with sn > P (un) > sn+1, then

λ ≤ λ∗
n which proves that (λ∗

n, u∗
n) is a (supercritical) turning point.

With a completely symmetric argument, using the sets

K ′
n = {(λ, u) ∈ C+, withP (u) = s, and s′n ≥ s ≥ s′n+1}

and defining λ
′∗
n = inf{λ : (λ, u) ∈ K ′

n} we show the existence of u∗ such that (λ
′∗
n , u

′∗
n ) ∈ K ′

n

is a (subcritical) turning point.

In order to prove the existence of resonant solutions, let us show now the following: there
exists n0 ∈ N such that for each n ≥ n0 both sets Kn and K ′

n contain resonant solutions, that is,
solutions of the form (σ1, u).

Let us use a reductio ad absurdum argument for the sets Kn. If this is not the case, then there
will exist a sequence of integers numbers nj → +∞ such that Knj

does not contain any resonant
solution. This implies that the compact sets K+

nj
= {(λ, u) ∈ Knj

: λ ≥ σ1} can be written as
K+

nj
= C+ ∩ {(λ, u) ∈ R × C(∂Ω) : λ > σ1, snj

> P (u) > snj+1} and therefore K+
nj

contains
at least a connected component of C+. Moreover it is nonempty since we know that there exists
at least one solution (λ, u) with P (u) = s′nj

∈ (snj
, snj+1) and therefore λ > σ1. The fact that

we can construct a sequence of connected components of C+ contradicts the fact that C+ is a
connected near (σ1, 0) ∈ R × C(Ω̄).

A completely symmetric argument can be applied to the sets K ′
n.
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3. TWO EXAMPLES

3.1. Resonant solutions for the oscillatory nonlinearity. In [Arrieta et al., 2007, Theorem 8.1]
it is proved that if α > 1, for any β ∈ R, and C ∈ R, there is an unbounded branch of positive
solutions. Assume from now that β < 0.

Taking , we see that

uk(x) := [asin(−C) + kπ]1/βΦ1(x), k ≥ 0,

defines a sequence of resonant solutions to (1.1).

3.2. A one dimensional example. Now we consider the onedimensional version of (1.1), where
most computations can be made explicit.

Observe that equation (1.1) in the one dimensional domain Ω = (0, 1) reads⎧⎨⎩ −uxx + u = 0, in (0, 1)
−ux(0) = λu + g(λ, 0, u(0)).

ux(1) = λu + g(λ, 1, u(1)),

The general solution of the differential equation is u(x) = aex + be−x and therefore the
nonlinear boundary conditions provide two nonlinear Eqs. in terms of two constants a and b.
The function u = aex + be−x is a solution if (λ, a, b) satisfy(−(1 + λ) (1 − λ)

(1 − λ)e −(1 + λ)e−1

)(
a
b

)
=

(
g(λ, 0, a + b)

g(λ, 1, ae + be−1)

)
In this case we only have two Steklov eigenvalues,

σ1 =
e − 1

e + 1
< σ2 =

1

σ1
=

e + 1

e − 1
.

Choosing g(λ, s) = g(s), and restricting the analysis to symmetric solutions us(x) = s(ex +
e1−x), with s ∈ R, it is easy to prove that us(x) is a solution if and only if λ satisfies

(3.1) λ(s) = σ1 − g(s(e + 1))

s(e + 1)
, s > 0.

Therefore, whenever g(u) = o(u) at zero, there is a branch of solutions (λ(s), us) → (σ1, 0)
as s → 0.

Fix now

g(s) = sα sin(sβ) for any α > 1, β < 0.

From definition (2.1) we can write
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FIGURE 4. α = 1.4, β = −0.3 and β = −0.5.

G0+ :=

∫
∂Ω

lim inf
s→0+

sg(s)

|s|1+α
Φ1+α =

∫
∂Ω

lim inf
s→0+

sin(sβ) Φ1+α = −
∫

∂Ω

Φ1+α < 0,

G0+ :=

∫
∂Ω

lim sup
s→0+

sg(s)

|s|1+α
Φ1+α =

∫
∂Ω

lim sup
s→0+

sin(sβ) Φ1+α =

∫
∂Ω

Φ1+α > 0

and then G0+ < 0 < G0+ .
Moreover, by looking in (3.1) at the values of s ∈ R such that λ(s) = σ1 we get that (σ1, uk)

is a solution for any k ∈ Z, where

uk(x) :=
(kπ)1/β

e + 1
(ex + e1−x),

i.e. there is a sequence of solutions of the resonant problem converging to zero, see Fig. 4.
Moreover, computing in (3.1) the local maxima and minima of λ(s) we get that (λ∗

k, u
∗
k) is a

sequence of turning points converging to zero, where

λ∗
k := σ1 − s

(α−1)/β
k sin(sk), u∗

k(x) := s
1/β
k (ex + e1−x)
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and where sk is such that

tan (sk) = − β

α − 1
sk, sk ∈ [−π/2 + kπ, π/2 + kπ]

with s
1/β
k → 0 as k → ∞ thanks to β < 0.

Let us observe that the bifurcation from zero phenomena occurs whenever α > 1 for any β
and that whenever α + β < 1 the number of oscillations grows up quicker than the number of
oscillations of multiples of the eigenfunction and can not be controlled, let us compare Fig. 4
left and right.

REFERENCES
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José M. Arrieta, Rosa Pardo, and Anibal Rodrı́guez-Bernal. Infinite resonant solutions
and turning points in a problem with unbounded bifurcation. Int. J. Bifurcation Chaos
Appl. Sci. Eng., 20(9):2885–2896, 2010. doi: 10.1142/S021812741002743X. URL
http://dx.doi.org/10.1142/S021812741002743X.

Alfonso Castro and Rosa Pardo. Infinitely many stability switches in a problem with sublinear
oscillatory boundary conditions.

Michael G. Crandall and Paul H. Rabinowitz. Bifurcation from simple eigenvalues. J. Functional
Analysis, 8:321–340, 1971.

Jorge Garcı́a-Melián, Julio D. Rossi, and José C. Sabina de Lis. An elliptic sys-
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