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RESONANT SOLUTIONS AND TURNING POINTSIN AN ELLIPTIC PROBLEM
WITH OSCILLATORY BOUNDARY CONDITIONS

ALFONSO CASTRO, ROSA PARDO

ABSTRACT. We consider the elliptic equation —Awu + v = 0 with nonlinear boundary conditions

9u — \u+ g(\, =, u), wherethe nonlinear term 22220, 0, as|s| — 0 and g is oscillatory. We
provide sufficient conditions on g for the existence of sequences of resonant solutions and turning

points, accumulating to zero.

1. INTRODUCTION

The aim of the present work isto complement the study initiated in [Arrietaet a., 2010], and
[Castro and Pardo] on the positive solutionsto the following boundary-val ue problem:

(1.1) { Gu = Au+g(\ ), on o8,

where 2 ¢ RY is a bounded and sufficiently smooth domain, N > 2, ) is area parameter,
g\, z,s) =o(s) ass — 0 and g isoscillatory. A typical example of suchag is

s B
(1.2 g(x,s) = s [Sin (‘ 1(7) ) +C

While in [Arrietaet a., 2010], [Castro and Pardo], thecase o + < 1, # > 0 is treated, we
focus now on the complementary range o + 3 > 1, 5 < 0. The case with o < 1 corresponds to
abifurcation frominfinity phenomenon, see[Arrietaet a., 2007, 2009, 2010, Castro and Pardo],
and [Rabinowitz, 1973]. On the contrary, the case with « > 1 corresponds to a bifurcation from
zero phenomenon, see [Arrietaet al., 2007] and [Crandall and Rabinowitz, 1971, Rabinowitz,
1971].

The oscillatory situation is in principle more complex than the monotone one, since order
techniques such as sub and supersol utions are not applicable.

witha+ 5 >1, [<0.
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Onenovelty in problem (1.1) isthat the parameter appears explicitly in the boundary condition.
With respect to this parameter, we perform an analysis of the local bifurcation diagram of non-
negative solutionsto (1.1), which turns out to be different from the case o« < 1 (see Figures 1, 2
for « > 1 and Figure 3for a < 1).

Throughout this paper we assume:
(H1): ¢ : R x 992 x R — R isa Carathéodory function (i.e. ¢ = g(\, z, s) is measurable
inz € Q, and continuous with respect to (A, s) € R x R). Moreover, there exist G; €
L7(09Q) with r > N — 1, and continuous functions A : R — R*, andU : R — R,

satisfying
lgh 2, 8)] < ANG1(2)U(s),  ¥(Az,5) € Rx 02 xR,
lim sup % < 400 forsome « > 1.
[s|—0 51

(H2) : The partia derivative g¢(), -, ) € C(952 x R) (where g, := %,) gs(-,+,0) =0, and
thereexist 7 € L"(092), withr > N — 1, and p > 1 such that

’g()‘a z, 8) - Sgs()\7 Z, 8)‘
|s]?
for x € 02 and s < e small enough.
Let {o;}32, denote the sequence of Steklov eigenvalues of the problem

{—A(I)+<I> = 0, inQ

SFl(ZE), s\ — oy

(L3) 2% 53, ondq.

The Steklov eigenvalues form an increasing sequence of real numbers, {o;}:°,. Each eigenvalue
has finite multiplicity. The first eigenvalue o, is simple and, due to Hopf’s Lemma, we may
assume its eigenfunction @, to be strictly positive in 2. The eigenfunctions are orthogonal in
L*(09), and we take || D1 || 90y = 1.

As stated in [Arrietaet a., 2007, Theorem 8.1], due to (H1) there exists a connected set of
positive solutions of (1.1) known as a branch bifurcating from zero . We denote it by C* C

R x C(£2), and recall that for (\, uy) € C*
u=s5d +w, with w =o(|s|]) and |oy — A =0(1) as|s| — 0.

Definition 1.1. Asolution (A*, w*) of (1.1) inthe branch of solutionsC*t C R x C'(Q2) iscalleda

turning point if thereisa neighborhood 17 of (A\*, v*) inR x C(2) such that, either W NC* C

[A*,00) x C(Q) or WNCH C (—o0,\*] x C(9).

Our goal isto give conditionson the nonlinear oscillatory term g that guarantee the existence of
seguences accumul ating to zero of subcritical solutions (i.e. for values of the parameter \ < o),
supercritical solutions (i.e. for A > o), resonant solutions (i.e. for A = o), and turning points.
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Our main result, Theorem 1.3 below, is exemplified by the case in which g is given by (1.2).
In fact we have:

Theorem 1.2. Assumethat g isgiven by (1.2) with 5 < 0. If
IC| <1, and a+0>1,

then in any neighborhood of the bifurcation point (o1,0) in R x C(£2), the branch C* of posi-
tive solutions of (1.1) contains a sequence of subcritical solutions, a sequence of supercritical
solutions, a sequence of turning points, and a sequence of resonant solutions.

The proof of this Theorem follows directly from Theorem 1.3.

Theorem 1.3. Assume the nonlinearity ¢ satisfies hypothesis (H1) and (H2). Assume also that

(1.4) 9()\,96:8)‘;‘&9(01,36,8) 50 8 Aorop s o0
pointwiseinz.
Let G : R x C(Q) — R be defined by
ug(/\v K u) 1+a
1 = —— P
( 5) G()\,U) /dQ |U|1+O‘ 1
If there exist sequences {s,, }, {s/,} converging to 0+, such that
(1.6) lirf G(oy,s,®1) <0< lirJqu G(o1, 5,P1)
then

i) For sufficiently largen > 1, if (A, v) isa solution of (1.1) with

P(u) := Joo U(};l = Sp,
Joo ®7
then (\, w) issubcritical. Smilarly, if P(u) = s/, itissupercritical. Consequently, there
exist two sequences of solutions of (1.1), {(\,, u,)} and { (X}, u,)} convergingto (o4, 0)
asn — oo, one of them subcritical, \,, < o4, and the other supercritical, \!, > 0.
ii) Thereisa sequence converging to zero of turning points {(\*, ")} such that

A — 07, |2 || oo (902) — 0, asn — 0.

In fact, we can always choose two subsequences of turning points, one of them sub-
critical, A3, , < o1, and the other supercritical, A5, > o;.
iii) Thereisa seguence converging to zero of resonant solutions, i.e. there are infinitely many
solutions { (o, @, ) } 0f (1.1) With |[2,|| o a5 — O-

The behavior of positive solutionsto (1.1) bifurcating from (o4, 0) described in Theorems 1.2
and 1.3 issimilar to that of the solutions bifurcating from (¢, co) for the sublinear problem, see
[Arrietaet a., 2010] for details.
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FIGURE 1. Bifurcation diagram of subcritical and supercritical solutions, con-
taining infinitely many turning points and infinitely many resonant solutions.

The complex nature of the nonlinearity in (1.2), makes an exhaustive analysis of the global
bifurcation diagram outside the scope of thiswork.

In [Korman, 2008] the author considersinthecasea = 1, § = 1. Heassumeseither N = 1
or €2 to be aball and the nonlinearity to be bounded by a constant small enough. He obtainswhat

he calls an oscillatory bifurcation. We refer the reader to [Garcia-Melian et al., 2009] for related
problems with nonlinear boundary conditions.

This paper is organized asfollows. Section 2 containsthe proof of our main result, giving suf-
ficient conditionsfor having subcritical, supercritical, and resonant solutions. Section 3 presents

two examples; explicit resonant solutions for the oscillatory nonlinearity (1.2) and the one di-
mensional case.

2. SUBCRITICAL, SUPERCRITICAL AND RESONANT SOLUTIONS

In this section we give sufficient conditions for the existence of a branch of solutionsto (1.1)
bifurcating from zero which is neither subcritical (A < o), nor supercritical, (A < o). From
this, we conclude the existence of infinitely many turning points, see Definition 1.1, and an

infinite number of solutions for the resonant problem, i.e. for A = ;. Thisis achieved in
Theorem 1.3
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FIGURE 2. A bifurcation diagram for o = 1.5..

At this step, we analyze when the parameter may cross thefirst Steklov eigenvalue. To do that,
we look at the asymptotic rate of the nonlinear term

. . Sg(Aa K 8) 1
2.1 G ::/ liminf —Z2 2 prte
( ) X0+ 50, (M) —(01,0) ‘S‘l—i-a 1
for a > 1. Changing liminf by lim sup we define the number Go:. If Gor > 0, then C*
is subcritical, and if Go+ < 0, then C* is supercritical in a neighborhood of (o4,0). See
[Arrietaet a., 2009, Theorems 3.4and 3.5] for the bifurcation from infinity case. In this paper
we consider nonlinearities for which

QO+ <0< ao-&-.

We shall argue asin [Arrietaet al., 2010] for the bifurcation from infinity case. To determine

whether a sequence of solutions (\,,, u,,) is subcritical or supercritical, one must check the sign
of

(2.2 liminf G(\,, uy) and limsup G(\,,u,),

where G isdefined by (1.5). Thisisdonein Lemma 2.3.
In Proposition 2.2, it is proved that when ¢ is such that

lg(\, z, 8)| = O (|s|*) as|s| — 0 for somea > 1,
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FIGURE 3. A bifurcation diagram for o« = 0.5

then the solutionsin C* can be described as
U, = S, + wp, where / w,®; =0 and w, = O(]s,|%) asn — 0.
o0

We unveil the signs of the expressionsin (2.2) by just looking at the signs of the expressionsin
(2.2) a A\, = 0y and u,, = s,P;. Thisisachieved in Lemma 2.4.

For thiswefirst consider afamily of linear Steklov problemswith a variable nonhomogeneous
term at the boundary / depending on the parameter A
—Au+u = 0, inQ
Gu = Au+ h(\2), on 99
where h(A,-) € L7(092),r > N —1and A € (—o0, 09).
We use the decomposition

(2.3)

L7 (092) = span[®,] @ span[®,]=, where span[®,]* = {u e L"(09) : / ud, = 0} :
o0

For h(\,-) € L7(0R2), withr > N — 1, we write

24) A\ =a (NP +h(N,-), witha (\) = M, / hi(\, )Py = 0.
0N

faﬂ P, 2
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For A # o, the solution u = u(\) of (2.3) has a unique decomposition
a1 (A)

(2.5) u = ®; +w, where / wd; =0,
o1 — A a0
and w = w(\) € span[®, |+ solvesthe problem
“Aw+w = 0, inQ
(26) { 0w N+ hy(Ax),  ono.

Note that in (2.6) w(\) € span|[®,]+ isalso well defined for A = ;. Moreover, we have:

Lemma 2.1. For each compact set X C (—o0,02) C R there exists a constant C' = C(K),
independent of A, such that

|lw(N)|| 2@y < Cllha(X, ) ||lro) forany e K,
where w € span[®,]* isthe solution of (2.6) and h; € span[®, ]|+ isdefined in (2.4).
Proof. See Lemma 3.1 of [Arrietaet a., 2010]. O

Now we turn our attention to the nonlinear problem (1.1). Recall that for solutions (), u) close
to the bifurcation point (¢4, 0) we have

(2.7) u= 5P +w, wherew = o(s), w € span[®,]* ass— 0.
We define

Jog u() @1
(2.8) P(u) ==& ———.

Next, we give sufficient conditions on the nonlinear term g in (1.1), for w = O(|s|*) ass — 0,
see (2.7). We restrict ourselves below to the branch of positive solutions; a completely analo-
gous result holds for the branch of negative solutions. The following Proposition is essentially
Proposition 3.2 in[Arrieta et al., 2010] rewritten for s — 0; we include the proof by the sake of
compl eteness.

Proposition 2.2. Assume ¢ satisfies hypotheses (H1), (H2) and that for some« > 1 ande > 0
there exists a function GG; such that for |\ — 0| < e,and s € (0,¢) and z € 92 we have

lg(\, z, 5)]

|s[*

(29) < G1($>, G, € Lr(ﬁQ), r>N—1.

Then, there exists an open set O C R x C(Q) of the form O = {(\,u) : |\ — 01| <
00, ||u]| o) < so} for some d, and sy, such that
(i) Thereexistsa constant C; independent of \ suchthat, if (A, ) € CTNO and (\, u) #
(01,0) thenu = s®; + w, where s > 0, w € span[®,]+ and
[w]| L0y < CillGillrooy [s]%, a@s]s| —0

(ii) There existsa constant S, > 0 such that for all |s| < S, thereexists (\,u) e Ct N O
satisfying u = s®; + w, with w € span[®,]*.
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(iii) Moreover, for any (\,u) € Ct N O, u = s®; + w, withw € span[®,]*+,
oy — Al < Cyls|* 7, as|s| — 0,
with C5 independent of )\, in fact

2[|G1 | 21 a0
Cy= ————.
T e
Proof. Note that (2.9), Lemma 2.1, and the fact that, from (2.7), ®; + w/s — ®; ass — 0in
L>(082) imply thet ||w|| @0 < C|s|* ass — 0. This proves part i).

To prove part ii) note that C* N O is connected. Hence, using the decompoasitionin (2.7), we
have u = s®, + w with w € span[®,]*. Since the projection P is continuous, see (2.8), the
set {s € R : (1.1) hasasolution of theform u = s®; + wand w € [span[®;]*]} contains an
interval in R containing zero.

To prove part iii) we observe that if (A, «) is a solution of (1.1), u = s®; + w, with w €
span[®, ]+, multiplying the equation by the first Steklov eigenfunction ®; > 0 and integrating by
parts we obtain,

(o1 — )\)s/ P2 :/ g\, x, 5D + w)Py.
o) o)

Taking into account that

lg(\, 2, 5P + w)| _ lg(\, 2, 5Py + w)| ’q)lJrE’_)o, as s—0
‘S‘ ‘S@l +w| S
weget A — oy ass — 0.
Moreover, from (2.9), we obtain that
lg(\, z, 501 4 w) w|e vI®
)\’ : ® — « )(I) —) < *G ’CI) _) )
900251+ w)l = |s|" THIFE=m e @ T < Jsl Gale) [ B
and therefore
loy — A < @ Gi(x) ’@1 + ;’ Py < C||GillLr o]
o0 *1 JoQ

which ends the proof.

Our next Lemmais essentially Lemma 3.1 in [Arrietaet al., 2009] rewritten for s — 0. We
omit its proof. . It allowsusto estimate o, — A\, as \,, converges o .

Lemma 2.3. Assume the nonlinearity ¢ satisfies hypotheses (H1) and (H2).
Let (\,, u,) beasequence of solutionsof (1.1) with A, — o and ||uy, || L 9q) — 0. Ifu,, > 0,
then
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G0+ 1 . .
— < liminf G(\,, uy)
Joo @17 Joo @17 nmeo
< liminf OIT < lim sup UIT
oo HunHLoo(aQ) n—00 HunHLoo(aQ)
G
< limsup G(A,, uy,) < 0F

faﬂ 1?7 nooo B faﬂ P, 2

A similar statement is obtained for the case u,, < 0, just changing G, by G,- and G+ by
Go-.

Let {s,} and {s/,} satisfy

(2.10) —o00o< lim G(oy,s,®) <0< lim G(oy,5,P1) < 0.

n—-+00 n—-+00

In order to prove Theorem 1.3, we show that the signsin (2.2) can be deduced from those of
(2.10). Thisis stated in the following result, which is a slight variation of [Arrietaet a., 2010,
Lemma 3.3]

Lemma 2.4. Assume that ¢ satisfies hypotheses (H1), (H2) and (1.4).

If (An,s,) — (01,0) and there exists a constant C' such that ||w, || @o) < C|s,|* for all
n — 0, then

liminf G(\,, $,®1 + w,) > liminf G(oy, s,P1),

n—-+00 n—-+00

where GG isgiven by (1.5). Smilarly

limsup G(A,, $,®1 + w,) < limsup G(oy, s,P1).

n—-+00 n—-+00

Proof. Throughout this proof, C' denotes several constants depending only on (2, g). Given
e > 0, assumethat [(\,, s,) — (01,0)| < e.
By the mean value theorem we have

1
g()\nv x, an)l + wn) - g()\nv x, an)l) - wn/ gs(Any K an)l + Twn) dr
0

IN

(211) [wallzee@) sup 1gs(An, - sn®1 + Twn )| o (a0 -

T€[0,1]
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Therefore
/ ‘g()\n,x, an)l +wn) - Q(Am% an)l)) CI)1 dl‘
N

< HwnHL""(aQ)/ sup ||gs(An, -, 50 ®1 + Twn)HLOO(aQ)
o0 T€[0,1]
(2.12) < ’aQH‘wnHL‘X’(@Q) Sl[’})pl] Hgso‘m 5Py + Twn)HLOO(BQ) :
7€|0,
By hypotheses (H1)-(H2), for all = € 09,
A
(213 ‘g(Hi‘”‘ < |slP i) + Ols|* G () max{A(\,), n > 1} =: Dy(x),
S
for n large, and v = min{p, a} > 1. Hence, D, € L"(9N2) withr > N — 1, and
! .
(2.14) sup |gs(An,z,8)| < Dy(x) (—) with ~ > 1.
|s|<1/n n

Since ||wy, || Lo a0) = O(]sn|*), from (2.12) and (2.14)

)\m'asncb + wy,) — )\m'asncb
/ ¢ 1+ wn) — o Vg, < € sup flga0hm s 5081+ 70 e
o0

|sn | r€[0,1]
(2.15) < C sup |lgs(Ans v 8)ll e oy — 0
Is|<1/n
asn — oQ.
Therefore
n Ana'a qu) n
lim inf / 59 81+1+w)¢)1
n—+oo  Ja0 | |1

2 lim Sng()\na i Sncbl + wnl) - Sng()‘na K Sn@l)
n—ce a0 |sn| 1T

n Anu ) qu)
+liminf/ 5nd( - sn 1) b,
n—too Jag  |sultTe

-5, P
= liminf/ 519 (An, 50 P1) P,
o0

n—+4o00 | Sn | I+a

dy

-5, D
- liminf/ 509 (01,7, 50 1) Dy,
n—too Joq  |sn|t®

where we used (2.15) and (1.4) respectively.
Now note that, multiplying and dividing by )cbl 4
above can be written as

" the integrand of the left hand side
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[e%

n /\nu'a nq) n
090015001 + ) o

(50 @1+ 0n)g(An, o 50 Py ) |
‘Sn‘l—l—a

|SncI)l +wn|1+a Sn
Then, (H2) and the fact that ®; + w,, /s, — ®, in L>°(02) concludes the proof.

o, =

Now we prove the first main result in this paper. Roughly speaking, it states that if there are
a sequence of subcritical solutions and another of supercritical solutions, since the solution set
is connected, there are infinitely many turning points and infinitely many resonant solutions. We
prove the result for the positive branch. The same conclusions can be attained for the connected
branch of negative solutions bifurcating from zero.

Proof of Theorem 1.3 From Proposition 2.2, ii), consider any two sequences of solutions of
(1.1), such that (A, u,) — (01,0) and (A, u),) — (01,0) inC* with
n® "o
P(uy,) = Lﬂu 21 =s,, and P(u)= LQ u"21 =s.
Joq @7 Joq @7
Writing u,, = s,®1 + w,, withw,, € span[®;]*, from Proposition 2.2 i), we have ||w,|| .= sq) =
O(|sn|*). From Lemmata 2.3, and 2.4, hypotheses (1.4) and (1.6) we get that

- )\n 1 .. n(I) n )\m "y nq) n
lim inf mT Z > lim lnf/ (3 1+ w )g( f+a 1 tw )q)%-f-a
oo |un|[Focian) Joa @1 e Joo |$nP1 + w|
1 n )\na'a nq)
>+ lim inf/ 5n9/( 1+i ) 1
Joq @1 oo Joq |Sn]

1 n 'y nq)
= T3 lim lnf/ i g(Ul 1+S 1) ®1 > 07
fag P n—too Joq | |1

and therefore \,, < o;.

Analogoudly, for (X, ul) weget A/, > o1. Hencei) is proved.

To proveii), assume, by choosing subsequencesif necessary, that s,, > s/, > s, foraln > 0
andthat 0 < s,,s/, < S, where S, is the one from Proposition 2.2, part ii). In particular, from
i) and ii) of Proposition 2.2 we have that if (A, u) € C™ and P(u) = s < Sy then ||u|| L= (a0) <
(1 + C1]|G1lLro9)]So|*~ 1) s. Taking Sy small enough we may assume that ||u/| 1 (a0) < 2s.

Let

(2.16) K,={(\u)eC", withP(u)=s, and s, > s > 5,1}

Let us see that, for each n € N, K, isacompact subset of R x C(2). Let {(u, vi)} bea
sequence in K,,. Without loss of generality we may assume that {..;} convergesto p*. Since
v, = P + wy with Wy = O(’tk‘a) and Sy =t =: p(’l}k) > Sptls for al £, then Hvkuc(ag) <
tr + [|willcan) < C with C'independent of . Thisand Proposition 2.3 of [Arrieta et al., 2007]
we have

(2.17) vrllc@) < C(1+ [Jurllcon) < C,
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where, again, C' is independent of k. Since the embedding C7(Q) — C7(Q) is compact for
0 < v < ~wemay further assume that the sequence {v; } convergesto someu* € C7' (). This,
hypothesis (1) and the dominated convergence theorem imply that {g(s, -, vx)} convergesto
g(p*, -, u*)in L™(09). Therefore, since

—Av, +v, =0 inQ
(2.18) vy,

on et g, T, v)  on 09,

passing to the limit in the weak sense we have
—Aut+u" =0 nQ
(2.19) ou*
on

By the continuity of the projection operator we also have s,, > s* = P(ux) = limg_.o, P(vy) >
spi1. Hence (u*, u*) € K, which provesthat K, iscompact.

= p'u* + g\, x,u*)  on 0.

Sinces,, > s/, > s,41, thereexists (A, u) € K, with A\ > ;. Hence, if we define
(2.20) Ar =sup{A: (\u) € K,},

then \* > X > o0y, seeparti). From the compactness of K, thereexistsw; suchthat (\*, u’) €

K,,. From the definition of \*, if (A, u) isasolution of (1.1) with s,, > P(u,) > s,1, then
A < X\ which provesthat (A}, v) isa(supercritical) turning point.

n’ 'n

With a completely symmetric argument, using the sets

K, ={(\u)€C, withP(u) =s, and s, > s > s/}

/

and defining A" = inf{\ : (\,u) € K’} we show the existence of u, such that (\*, v.*) € K/,
isa (subcritical) turning point.

In order to prove the existence of resonant solutions, let us show now the following: there
existsny € N such that for each n > n both sets K, and K, contain resonant solutions, that is,
solutions of the form (o4, u).

L et us use a reductio ad absurdum argument for the sets K,,. If thisis not the case, then there
will exist asequence of integers numbersn; — +oo such that k,,, does not contain any resonant
solution. Thisimplies that the compact sets K = {()\,u) € K,,; : A > o1} can be written as
Ko =C"n{(\u) € RxC(00Q) : A > 01,8, > P(u) > s,,+1} and therefore K7 contains
at least a connected component of C*. Moreover it is nonempty since we know that there exists
at least one solution (A, u) With P(u) = s;, € (s, Sy;+1) and therefore A > o,. The fact that
we can construct a sequence of connected components of C* contradicts the fact that Ct isa
connected near (0,0) € R x C(Q).

A completely symmetric argument can be applied to the sets K|,
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3. TWO EXAMPLES

3.1. Resonant solutionsfor theoscillatory nonlinearity. In[Arrietaet al., 2007, Theorem 8.1]
itisprovedthat if « > 1, forany 6 € R, and C' € R, there is an unbounded branch of positive
solutions. Assume from now that 3 < 0.

Taking , we see that

up(z) = [asin(—C) + kx]YP®, (), k>0,

defines a sequence of resonant solutionsto (1.1).

3.2. A onedimensional example. Now we consider the onedimensional version of (1.1), where
most computations can be made explicit.
Observe that equation (1.1) in the one dimensional domain 2 = (0, 1) reads

—Uyy +u = 0, in(0,1)
ux(1) = du+g(A 1 u(l)),
The genera solution of the differential equation is u(z) = ae® + be~* and therefore the

nonlinear boundary conditions provide two nonlinear Egs. in terms of two constants a and b.
Thefunction u = ae® + be~* isasolutionif (A, a, b) satisfy

(W50 ) () -

g(A\,0,a+0b)
g(A\, 1, ae + be™t)
In this case we only have two Steklov eigenvalues,

e—1< 1 e+ 1
09 = — = )
e+1 2 o1 e—1

g1 =

Choosing g(\, s) = g(s), and restricting the analysis to symmetric solutions u;(z) = s(e* +
el=?), with s € R, itiseasy to provethat u,(z) isasolutionif and only if \ satisfies

g(sle+1))

(31) )\(8) =01 — S(e T 1)

) s> 0.

Therefore, whenever g(u) = o(u) at zero, thereis a branch of solutions (A\(s), us) — (o1, 0)
ass — 0.
Fix now

g(s) = s sin(s”) foranya >1, 3 <0.

From definition (2.1) we can write
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B 0=1.4, p=—0.3, C=0 . 0=1.4, B=-0.5, C=0

1 —

x 10

0.9 b 0.9

0.8

07 < |

0.6F > E 0.6
—
—
—

s/(1+e)

0.4 <
03} e

0.2r [

0.1+ ———

FIGURE4. a=14,3=—-03and 3 = —0.5.

Gy = / lim inf Sgl(_f) <I>1+a:/ lim inf sin(s®) q>1+a:—/ plte <0,
o s—0t [s[tte an s—0T 89

Gor = / lim sup %@@Ha:/ lim sup sin(s”) @Ha:/ oo >
o0 s—ot |S[tTe 90 s—0+ a9

andthen G: < 0 < Gy-.
Moreover, by looking in (3.1) at the values of s € R such that \(s) = o, we get that (o, uy)
isasolutionfor any k£ € Z, where

kT 1/8
u(z) = (e l . (e" +e' ™),
i.e. thereisasequence of solutions of the resonant problem converging to zero, see Fig. 4.
Moreover, computing in (3.1) the local maximaand minimaof A(s) we get that (A}, u;) isa
sequence of turning points converging to zero, where

AL =0y — S]Ea—l)/ﬁ sin(sy), wi(z) = Skl/ﬂ(ex + el—x)
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and where s;, is such that

5
a—1

tan (s) = — Sk, sk € [-m/2+ km,m/2 + k7]

with s/ — 0 as k — oo thanksto 3 < 0.

Let us observe that the bifurcation from zero phenomena occurs whenever o > 1 for any 3
and that whenever o + § < 1 the number of oscillations grows up quicker than the number of
oscillations of multiples of the eigenfunction and can not be controlled, let us compare Fig. 4
left and right.
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